Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Alexandra Goriounova, Peter Held,\* Petra Becker and Ladislav Bohatý

Institut für Kristallographie, Universität zu Köln, Zülpicher Straße 49b, D-50674 Köln, Germany

Correspondence e-mail: peter.held@uni-koeln.de

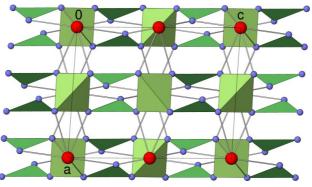
#### Key indicators

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (O–B) = 0.005 Å R factor = 0.047 wR factor = 0.106 Data-to-parameter ratio = 25.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# Europium triborate, EuB<sub>3</sub>O<sub>6</sub>

Europium triborate, EuB<sub>3</sub>O<sub>6</sub>, has been grown from a strontium borate flux. It crystallizes in the space group I2/a and is a member of the isostructural series  $REB_3O_6$  (RE = La, Ce, Pr, Nd, Sm, Gd, Tb). Its structure consists of chains of  $[B_6O_{12}]_n^{6-}$  building units, that run parallel to the *c* axis, and tenfold coordinated Eu<sup>3+</sup>.


Received 10 September 2004 Accepted 29 September 2004 Online 9 October 2004

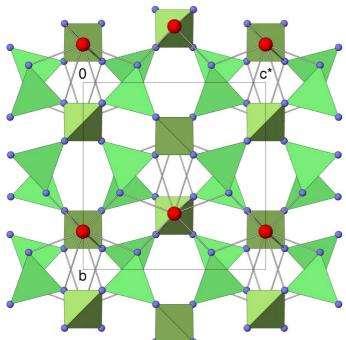
## Comment

The binary rare earth oxoborates  $REB_3O_6$  (RE = La, Ce, Pr, Nd, Sm, Gd, Tb) are known to form an isostructural series and crystallize in the monoclinic space group I2/a (Ysker & Hoffmann, 1970; Abdullaev *et al.*, 1975, 1981; Goriounova *et al.*, 2003, 2004; Sieke *et al.*, 2002; Pakhomov *et al.*, 1972). For RE = Tb, a further structural modification with orthorhombic symmetry is known (Nikelski & Schleid, 2003) that was also found for  $REB_3O_6$  with the smaller lanthanides Dy–Lu (Emme *et al.*, 2004). The crystal structure of EuB<sub>3</sub>O<sub>6</sub> is reported here for the first time.

In the course of systematic investigations of crystal-growth conditions for binary rare earth borates, methods of synthesis from ternary systems were established that led to single crystals of  $EuB_3O_6$ .

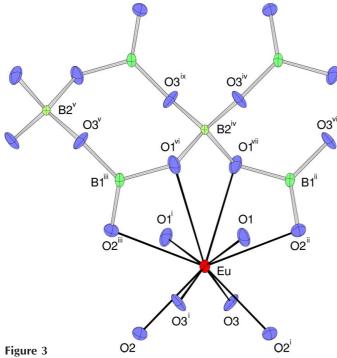
EuB<sub>3</sub>O<sub>6</sub> is a member of the isostructural series of  $REB_3O_6$ with monoclinic symmetry I2/a (No. 15). Its structure consists of infinite chains that are built of  $[B_6O_{12}]_n^{6-}$  structural units that run along the *c* axis of the structure (Fig. 1). Eu is tenfold coordinated to oxygen and links the borate chains into a threedimensional framework (Fig. 2). The complex borate polyanion is composed of  $[BO_4]$  tetrahedra that are connected *via* two  $[BO_3]$  triangles at a time to the adjacent  $[BO_4]$  tetrahedra on both sides (Fig. 3). Each  $[BO_3]$  is connected to two  $[BO_4]$ , the bridging O atoms belong also to the coordination polyhedron of one Eu. The non-bridging O atoms of the  $[BO_3]$ 




#### Figure 1

Projection of the structure of the title compound along [010]. Eu atoms are shown as red spheres, O atoms as small blue spheres,  $[BO_4]$  groups (olive) and  $[BO_3]$  (green) are represented as polyhedra.

© 2004 International Union of Crystallography


Printed in Great Britain - all rights reserved

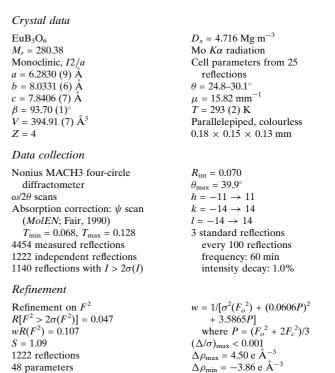
# inorganic papers



### Figure 2

Projection of the structure of the title compound along [100]. Eu atoms are shown as red spheres, O atoms as small blue spheres,  $[BO_4]$  groups (olive) and  $[BO_3]$  (green) are represented as polyhedra.




ORTEPIII projection (Burnett & Johnson, 1996) of the tenfold Eu coordination and the main features of the borate chains of the title compound with the atom-numbering scheme (projection along [100]). Atoms are shown as 75% probability ellipsoids. [Symmetry codes: (i)  $\frac{1}{2} - x, y, 1 - z;$  (ii)  $x, -y, z + \frac{1}{2};$  (iii)  $\frac{1}{2} - x, \frac{1}{2} - y, \frac{1}{2} - z;$  (iv)  $x - \frac{1}{2}, 1 - y, z;$  (v)  $x - \frac{1}{2}, y + \frac{1}{2}, z - \frac{1}{2};$  (vi) -x, 1 - y, 1 - z; (vii)  $x + \frac{1}{2}, 1 - y, z;$  (viii)  $1 - x, y + \frac{1}{2}, \frac{3}{2} - z;$  (ix) 1 - x, 1 - y, 1 - z.]

groups coordinate two Eu simultaneously, each. The irregular  $[EuO_{10}]$  coordination polyhedra are connected *via* edges to infinite chains along the *c* axis. The B–O distances of the

 $[BO_3]$  group range from 1.322 (6) to 1.415 (5) Å. The  $[BO_3]$  triangles are substantially distorted with a B–O distance of the non-bridging atom O2 that is significantly shorter than the B–O distances of the bridging atoms O1 and O3. B–O distances of the  $[BO_4]$  tetrahedron range from 1.451 (5) to 1.478 (5) Å and fit well into the range of B–O distances found for many other borate structures [see, for comparison, *e.g.* Zobetz (1982) and Zobetz (1990)].

## Experimental

Crystals of EuB<sub>3</sub>O<sub>6</sub> were grown in the pseudo-ternary system Eu<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>-SrO. A homogenized powder mixture of Eu<sub>2</sub>O<sub>3</sub> (99.9%, Meldform metals), H<sub>3</sub>BO<sub>3</sub> (99.8%, Merck) and SrO (98%, Merck) in a ratio of 1 mol% Eu<sub>2</sub>O<sub>3</sub>/40 mol% H<sub>3</sub>BO<sub>3</sub>/1.5 mol% SrO was heated in a covered platinum crucible to 1373 K and subsequently cooled with a cooling rate of about 2.0 K h<sup>-1</sup> to 1173 K. Transparent colorless single crystals of the title compound were mechanically separated from the strontium borate flux.



| $\Delta \rho_{\rm min} = -3.86  {\rm e}  {\rm \AA}^{-3}$ |
|----------------------------------------------------------|
| Extinction correction: SHELXL97                          |
| Extinction coefficient: 0.0093 (13)                      |

Table 1Selected geometric parameters (Å,  $^{\circ}$ ).

| Eu-O2                           | 2.338 (3) | B1-O1 <sup>iii</sup>           | 1.415 (5) |
|---------------------------------|-----------|--------------------------------|-----------|
| Eu-O3                           | 2.492 (4) | B1-O2                          | 1.322 (6) |
| Eu-O2 <sup>i</sup>              | 2.499 (3) | B1-O3 <sup>iv</sup>            | 1.388 (6) |
| Eu-O1                           | 2.518 (4) | $B2-O1^{v}$                    | 1.478 (5) |
| Eu-O1 <sup>ii</sup>             | 2.789 (4) | B2-O3 <sup>vi</sup>            | 1.451 (5) |
|                                 |           |                                |           |
| $O2-B1-O3^{iv}$                 | 126.6 (4) | O3-B2-O1 <sup>vii</sup>        | 102.5 (2) |
| $O2-B1-O1^{iii}$                | 116.7 (4) | $O3^{vi} - B2 - O1^{v}$        | 102.5(2)  |
| $O3^{iv}-B1-O1^{iii}$           | 116.7 (4) | $O3-B2-O1^{v}$                 | 113.1 (2) |
| $O3^{vi}$ -B2-O3                | 117.6 (5) | $O1^{vii}$ -B2-O1 <sup>v</sup> | 107.9 (5) |
| $O3^{vi}$ -B2-O1 <sup>vii</sup> | 113.1 (2) |                                |           |
|                                 |           |                                |           |

Symmetry codes: (i)  $\frac{1}{2} - x$ ,  $\frac{1}{2} - y$ ,  $\frac{1}{2} - z$ ; (ii) -x, 1 - y, 1 - z; (iii)  $\frac{1}{2} + x$ ,  $y - \frac{1}{2}$ ,  $z - \frac{1}{2}$ ; (iv) 1 - x, -y, 1 - z; (v) 1 + x, y, z; (vi)  $\frac{3}{2} - x$ , y, 1 - z; (vii)  $\frac{1}{2} - x$ , y, 1 - z.

Because most of the  $REB_3O_6$  structures are described in space group I2/a, we also used this non-standard setting. The highest peak and deepest hole are located 0.65 and 0.58 Å, respectively, from Eu.

Data collection: *MACH3 Server Software* (Enraf–Nonius, 1993); cell refinement: *MACH3 Server Software*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 2002); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Deutsche Forschungsgemeinschaft, Graduiertenkolleg 549 'Azentrische Kristalle'.

### References

- Abdullaev, G. K., Mamedov, Kh. S. & Dzhafarov, G. G. (1975). Sov. Phys. Crystallogr. 20, 161–163.
- Abdullaev, G. K., Mamedov, Kh. S. & Dzhafarov, G. G. (1981). Sov. Phys. Crystallogr. 26, 473–474.

- Burnett, M. N. & Johnson, C. K. (1996). *ORTEP*III. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Dowty, E. (2002). *ATOMS*. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Emme, H., Nikelski, T., Schleid, T., Pöttgen, R., Möller, M. H. & Huppertz, H. (2004). Z. Naturforsch. Teil B, 59, 202–215.
- Enraf-Nonius (1993). MACH3 Server Software. OpenVMS version. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Goriounova, A., Held, P., Becker, P. & Bohatý, L. (2003). Acta Cryst. E59, i83– i85.
- Goriounova, A., Held, P., Becker, P. & Bohatý, L. (2004). Acta Cryst. E60, i134-i135.
- Nikelski, T. & Schleid, T. (2003). Z. Anorg. Allg. Chem. 629, 1017-1022.
- Pakhomov, V. I., Sil'nitskaya, G. I., Medvedev, A. V. & Dzhurinskii, B. F. (1972). *Inorg. Mater.* 8, 1107–1110.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sieke, C., Nikelski, T. & Schleid, T. (2002). Z. Anorg. Allg. Chem. 628, 819-823.
- Ysker, J. St & Hoffmann, W. (1970). Naturwissenschaften, 57, 129–130.
- Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.
- Zobetz, E. (1990). Z. Kristallogr. 191, 45-57.